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The free-volume theory of liquid solutions formulated by FIory and also by Patterson for 
binary systems, has been extended to ternary systems. Numerical calculations have been 
performed to test the validity of the approach, for a system of organic liquids, for a 
system of condensed gases, and also for a system of liquid metal alloys. Satisfactory 
results have been obtained in all cases. Thus, prediction of properties of ternary solutions 
from a limited number of data concerning pure components and binary mixtures was 
found possible. 

1. Introduction 
In his classical work, Tonks [1] has obtained the 
exact partition function for a one-dimensional 
liquid of incompressible molecules. An approxi- 
mate generalization of the formula to the three- 
dimensional case has been proposed by Flory [2] 
for single liquids and also for binary mixtures. 
Patterson and Delmas [3] have demonstrated 
another way of arriving at the same result; they 
have taken a corresponding states theory of  
solutions elaborated by Prigogine and his col- 
leagues [4] and then they have made some specific 
assumptions concerning molecular interaction 
potentials. In the following we shall call the 
approach under consideration the Flory-Patterson 
theory; we hope to avoid confusion with an earlier 
theory described by Flory in his monograph [5] 
and widely used at the present time. Applications 
of the new theory - as reviewed by Flory [6] and 
also by Patterson [7] - show in many cases 
quantitative agreement with the experimental 
data, for pure components as well as for binary 
mixtures. 

For many practical purposes it is necessary to 
predict properties of multicomponent liquid 
solutions from properties of pure components and 

from data for binary systems. One can, therefore, 
find in the literature a relatively large number of 
correlations, describing ternary systems in partic- 
ular. Most of such correlations, however, have at 
least two drawbacks. First, they are empirical, 
unrelated to any description of structure and inter- 
actions in solutions on the molecular level. 
Secondly, they are aimed at a particular group of 
liquid mixtures; thus a formula is proposed, e.g. 
for high-pressure systems of liquified gases; it is 
not expected that the same formula could be used, 
for example, for liquid metals alloys. 

Considerations such as outlined above have 
determined the object of the present work. We 
have extended the Flory-Patterson theory to 
ternary systems. Examples of calculations, per- 
formed to test the extension, include a system of 
organic liquids, a system of liquified gases, and 
also a metal alloy system. 

2. Basic relations 
The three-dimensional partition function for the 
theory under consideration 

Q = f2 [~eav*(v a / a -  1)3]Uree Nrsn/2vkT (1) 

is in fact applicable to a mixture of any number of 
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components, provided the parameters are properly 
defined in terms of concentration. The combina- 
torial contribution f~ is generally assumed to be 
given by 

f2 = N]OSvJ (2) 

where summation extends over all components; Nj 
denotes number of molecules of] th component, so 
that the total number of molecules N = 2 j N  i. 

Let us now explain physical quantities featuring 
in Equations 1 and 2. It is assumed, that each 
molecule consists of several segments. We are thus 
dealing with intersegmental rather than with inter- 
molecular interactions. Consequently, concen- 
trations are expressed in terms of segment 
fractions: 

N i r i _  Niri 
~ - ( 3 )  

Nr ZjNjrj 

where r i denotes the number of segments in a 
molecule of component i; calculation of r[s will be 
discussed later. 

After the combinatorial factor f2, we have in 
Equation 1 the term in square brackets, which 
represents explicitly volumetric effects. The co- 
efficient ~ is a geometric factor; it does not appear 
in equations actually used in practical calculations. 
It is assumed that each segment, of  volume v, can 
be compressed down to the hard-core volume v*. 
The ratio of these two volumes represents another 
characteristic parameter called the reduced volume 
g, so that 

73 
~" - - -  (4) 

- -  V*"  

There are at least two methods of calculating con- 
centrations q~i. But, as stressed by Patterson et al. 
[8], the prevailing procedure is to compute them 
from the incompressible volumes 73*, and this is 
what we have done in the present work. 

The volumetric term in Equation 1 contains 
also the total number of segments in the mixture 
Nr. This quantity is defined between denominators 
of the second and third member of Equation 3; it 
can easily be seen that r is the average number of 
segments per molecule. The parameter c appears 
because of the assumption that the number of 
translational degrees of freedom of a segment is 
equal to 3c. Thus, if a segment would be indepen- 
dent, its c would be equal to unity. For molecules 
other than monoatomic, when each segment is tied 
to its neighbours within the same molecule, we 

have generally c < 1. For a molecule of type j, 
from the values of c of each segment, an average 
value per molecule c i may be calculated. One can 
then calculate c for the whole system by concen- 
tration averaging, namely 

c = ~;cj~j  (5) 

The last, i.e. exponential, term in Equation 1 
represents the energetic factor in the partition 
function. Here s is the mean number of external 
contact sites per segment. That is, each segment 
has a certain number of interacting points. From 
these (similarly as for c's) the average number of 
interacting sites sj per segment in a molecule of 
type ]" is obtained. Further, again similarly as for 
the intersegmental degrees of freedom, the 
averaging for the whole system is performed: 

$iOi 
S = ~jSj~gj  --  Oi ( 6 )  

The last member of Equation 6 defines the surface 
fraction Oi. The interaction energy is represented 
by the parameter n; writing now specifically for a 
ternary mixture i + ] + k, we have 

n = 0~nii + 0~r~yj + 0~nkk + 20i0j.rhj 

+ 20iOkn~ + 20jOknjk. (7) 

Thus, nil represents the energy of interaction of 
two segments of type i, no corresponds to a seg- 
ment i interacting with a segment of  type ], etc. To 
characterize interaction energies of "mixed" pairs, 
one can introduce the parameter An/j: 

n i j  = 1 ( n i l  -[- n# -- An/i)- (8) 

There are analogous definitions for An~ and A~j k. 
One defines, further, hard-core pressures 

sinii 
P~i = 2v.~. (9) 

Instead of nij or A~i j one uses rather parameters 
Xij to represent mixed interactions: 

S iA~iY  (10) 
X O -  2v* 

We retain thus the de f in i t ion-  corresponding to 
the one introduced by Flory for binary mixtures 
[2] - which renders Xij 4:Xji. Clearly for a 
ternary system three such parameters are needed. 
If we decide,, however, to use Xii, the natural 
choice of the remaining parameters to preserve a 
certain symmetry - is Xjk and Xki.  Conversely, 
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the use of Xji  suggests taking Xkj and Xik .  Inter- 
action parameters belonging to the two sets are 
simply interrelated; let us notice that ~ij -- *?ji by 
definition, consequently A~ij - A*2ji and Equation 
10 gives Xi.i = X n s l / s j .  For the ternary hard-core 
pressure we can write 

P* = t~i~)i + PTC#y + t~kr - -  ( ~ i O j X i j  

-- r -- r O~Xk~. (11)  

The hard-core temperature is now introduced: 

$ i ~ i i  

Ti = 2v *c i k  (12) 

where k is the Boltzmann constant. The last 
equation in conjunction with Equation 9 gives a 
relation of the familiar form 

P?v~ = c ikTi* .  (13) 

In order to have an equation of the form of 
Equation 13 applicable also to mixtures, and in 
view of Equation 5, we express the hard-core 
temperature for the mixture as 

1 1 [ 
. P * $ i  , + . (14) 

�9 r t  * T;  

We have been using the parameter 7)* indepen- 
dent of  concentration, since it is possible to 
choose numbers of segments in molecules ri, rj and 
r k so as to have v* = v~ = v~ = v*. Parameters P/*, 
7"* and riv* may be calculated from properties of 
pure components. The necessary experimental 
data are molar volume V, isobaric expansivity a = 
V - l ( t ) V / ~ T ) p  and isothermal compressibility KT = 
- -  V - t ( 3  V/3P)T , or else 3' = a/KT ; the calculation 
procedures are described by Flory [2, 6].  

The set of relations given above permits us now 
to perform the main task, i.e. to write equations 
for various functions of mixing, or excess 
functions of mixing. As the configurational or 
interaction energy U c is 

Mrs 
U ~ - ( l S )  

2v 

(cf. the last factor in the partition function (1)), 
we obtain for the molar excess energy of mixing 

+ x ~ G  G - + x~ V* ~ x u 
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+ xj~* ok o~ 
- ~  X j k  + x k V ~  -z  Xki  (16) 

v 

where x i = N d N  and V* = NAr/*v* , with NA the 
Avogadro number. For the molar excess Gibbs 
function of mixing we get 

~i 1/3 - 1 
+ 3 N A r k T  c i~ i ln  ~ l /a  1 

~ j l / 3  - -  1 + ck ~bk ln~l  (17) 
+ cYq~J In ff~73-- 1 /3 - 

In Equations 16 and 17 concentrations x i  ought 
not be confused with pair interaction energy para- 
meters Xij .  Other functions are obtainable from 
Equation 1 7 by thermodynamics. In particular, for 
the difference between chemical potential of ith 
component in solution gi and the same component 
in pure state I~ii one obtains 

~ i - -  1 + ~ _ _ _  
+ P * V i *  3Tiln ~- i~- -  1 vi v 

~* V,* 
+ " '  X i j O j ( 1 - - O i ) - -  ~ . x~ ~ X~k OiOk - -  

x i  

+ ~ -  XkiOi(1 --Oi) x k  (18) 
v x i 

where Ti = T / T * .  Values of ~ may be obtained 
from T as described by Flory [2, 6] ; in turn, T is 
obtainable from Equation 14 in conjunction with 
Equation 11. 

The Flory-Patterson theory was successful in 
predicting excess functions of mixing on the level 
of not only first but also second derivatives of  
Gibbs or Helmholtz functions [9]. While this 
clearly reinforced the idea of extension to ternary 
mixtures, one more factor is worth noting. In 
many approaches to ternary mixtures separate 
ternary parameters are introduced; finding (or 
rather adjusting) these involves the necessity of 
performing first at least some experimental deter- 
minations for ternary mixtures. It was interesting 
to find out, whether ternary parameters could be 
avoided when" using the equations given above. 
Results of exemplary calculations performed are 
given in the following sections. 



3. Ethanol + benzene + n-hexane 
The above system has been chosen because its 
components represent different classes of organic 
compounds; apart of an aliphatic and an aromatic 
we have here an associated component. The 
presence of an alcohol makes the test o f  the 
theory more severe. Many theories of solutions fail 
completely for systems in which association 
O c c u r s .  

Precise experimental measurements of heats of 
mixing H E for the system in question have been 
made by De Q. Jones and Lu [10]; they have 
studied the ternary system as well as all three 
respective binaries at 298.15K. The coverage of 
the ternary system was fairly extensive, so that De 
Q. Jones and Lu were able to draw isoenthalpic 
lines on the concentration triangle. 

Our calculations were made using Equation 16; 
that is, in view of low pressure, the excess energy 
of mixing U E has been assumed to be equal to the 
excess enthalpy of mixing H E. Parameters for pure 
components have been calculated in the same way 
as in [11]. For binary mixtures also a procedure 
described earlier by one of us [11] has been 
followed; that is, rewriting Equation 6 as 

Oi = = - (19) 
~i + sj ~s 

Si 

one realizes that a description of a binary mixture 
involves characteristic (hard-core) parameters for 
pure components, plus two binary parameters: Xis 
and sj/sl. One can then solve for n experimental 
points (values of H E in the present case) a set of 
n equations in two unknowns. While an a priori 
prediction of the surface ratio sJsiis possible [12], 
the method does not seem accurate enough [11]. 
This is why we have obtained for each binary 
system the respective parameters Xii and si/si by 
computer fitting. For ternary mixtures we have 
used two methods. One was fitting ternary data 
using known parameters for pure components and 
finding the binary parameters Xij, Xsh and Ski  as 

well as the respective surface ratios. The second 
method consisted in predicing ternary heats of 
mixing basing entirely on binary data and on these 
for pure components. 

Experimental data, for pure components necess- 
ary to calculate the characteristic parameters have 
been taken for ethanol from [13], for benzene 
from [14] and for n-hexane from [15]. The values 
obtained are given in Table I. 

TAB LE I Characteristic parameters for pure components 

Component T V* T* P* 
(K) (cm3mol -l) (K) (Jcm -a) 

ethanol 298.2 46.41 5011 449.0 1.2645 
benzene 298.2 69.21 4709 627.6 1.2917 
n-hexane 298.2 99.56 4430 431.0 1.3227 
N 2 100.0 26.18 1144 243.5 1.5457 
Ar 100.0 22.17 1374 280.0 1.3706 
O2 100.0 21.23 1347 373.0 1.3846 
Zn 714.0 8.83 24604 5560.0 1.1025 
Sn 714.0 16.23 37859 2342.0 1.0626 
Cd 714.0 13.03 26640 3798.0 1.0933 

Calculations for binary and ternary mixtures 
have been performed using a non-linear curve- 
fitting computer program of the type described by 
Cuthbert and Wood [16]. The program was 
devised to perform a least-squares estimation of p 
parameter values al,a2, ...,ap in an equation of 
the general form 

y = y ( X l , X 2  .... Xm,a l ,a2  .... a v) (20) 

representing a relation between a set of rn indepen- 
dent variables X1, ..., Xm and a dependent variable 
y.  The experimental values of X's andy are taken 
as known from n experiments, with n > p .  In our 
case, we have used Equations 16 and 18 as those 
of the general form Equation 20. For binary 
systems we had one independent variable xi and 
two unknown parameters Xis and si/sl. For ternary 
systems there were two independent variables xi 
and x~, and five unknown parameters Xij, Xsk, Xki, 
s~/sl and Sh/S i. TO apply the non4inear curve-fitting 
program, we have written a FORTRAN subroutine 
which calculated the y ' s  of Equation 20 for the 
experimental concentrations (in the present case as 
given in [10]) and for a given set of parameter 
values. The main program then calculated the sum 
of squares of residuals, i.e. of differences between 
the y ' s  resulting from the subroutine and the 
corresponding experimental values. The problem 
was thus reduced to finding a minimum of the sum 
of squares of residuals, and the parameter values 
giving the minimum were accepted as "true" 
values. For each of such true values, the program 
supplied the standard error, Student's t function, 
and 95% confidence limits. In Table II we list for 
brevity values of the parameters and 95% con- 
fidence limits (in parentheses) only. Indices E, B, 
and H refer to ethanol, benzene and n-hexane, 
respectively. 

The first three columns in Table II contain 
parameters resulting from calculations for binary 
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TAB LE II Characteristic parameters for ethanol + benzene + hexane mixtures for 298.2 K 

Source  

Parameter E + B  B + H  E + H  E + B + H  

XEB 234.7 210.2 
(205.4 ~ 264.1) (192.6 --, 227.8) 

XBH 40.52 46.6 
(39.3 ~ 41.7) (42.9 ~ 50.4) 

XHE 13.27 13.71 
(11.13 ~ 15.42) (12.79 ~ 14.64) 

SB/SE 0.104 0.138 
(0.086 --' 0.121) (0.125 -~ 0.153) 

SH/SE 0.109 0.135 
(0.079 ~ 0.175) (0.115 --* 0.154) 

SH/$ B 1 .055 

(0.99 ~ 1.12) 
22.6 (ternary) 26.8 10.9 61.5 
75 (from binary) 

systems. Five of  these six parameters were used for 

ternary predictions;  in view of  redundance of  one 

of  the parameters,  the SH/SE values for ternary 
calculations were taken as the product  of  SH/SB 
and SB/SE values. The last column contains results 
from an independent  fitting of  ternary data. One 
notices that,  for example,  the parameter  XEB 
obtained from the binary ethanol + benzene 
results is fairly close to the respective value 
obtained from ternary measurements;  in fact, 
there is an intersection region of  95% confidence 
limits. Similar comparison can be made for other 
parameters in Table II. At the bo t tom of  the Table 
residual root  mean square values 6 characterizing 
each system are given. 

Parameters of  Table II may also be considered 
from the point  of  view of  their physical signifi- 

cance. One would expect,  that  interact ion energy 
between an alcohol and an aromatic hydrocarbon 
should be larger than energy of  interaction of  two 
hydrocarbons  or o f  an alcohol with a paraffinic 
hydrocarbon.  Inspection of  Xii values in the Table 
shows, that  this is indeed the case. One would also 
expect ,  that  the characteristic surface of  an 
ethanol  molecule should be smaller than surface of  
any of  the hydrocarbons containing six carbon 
atoms. We find that  this is confirmed by the 
surface ratios: SB/S E and SH/SE which are fractions, 
while SI-I/SB is of  the order of  unity.  

Values of  heats of  mixing H E for the three 
binary systems obtained using Equation 16 in con- 
junct ion with parameters o f  Table II are listed in 
Table III. The respective experimental  values of  
De Q. Jones and Lu [10] are given also. As 
witnessed already by  6 values in Table II, the agree- 
ment  is satisfactory. That is, in spite o f  association 
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TABLE III  Heats of mixing of bmary mixtures ethanol 
+ benzene, benzene + hexane and ethanol + hexane at 
298.2 K. 

System xi H E (J mo1-1) 

experimental calculated 

E + B  XE= 

B + H  x B - 

E + H  XE---- 

0.0250 315 247 
0.0586 469 481 
0.1615 795 826 
0.2673 906 913 
0.4668 824 802 
0.5602 705 693 
0.7018 490 493 
0.7074 480 484 
0.9058 158 162 

0.1519 431 405 
0.2136 543 540 
0.3575 776 778 
0.4678 877 881 
0.5242 893 902 
0.6427 868 873 
0.6497 859 868 
0.6957 820 823 
0.7211 792 791 
0.8075 650 635 
0.9157 346 332 

0.0395 301 203 
0.0497 328 245 
0.0726 328 328 
0.0730 373 329 
0.1509 488 515 
0.1773 521 554 
0.2707 542 625 
0.3757 584 625 
0.4043 580 615 
0.5680 518 504 
0.6318 488 444 
0.7749 364 285 
0.8399 290 206 
0.9526 159 62 
0.9483 114 68 



TAB LE IV Heats of mixing of ternary mixtures ethanol + benzene + hexane at 298.2 K 

XE XB H E (J mol -~) 

experimental calculated predicted 
for ternary 

0.4449 0.4449 946 947 838 
0.3814 0.3814 1009 999 899 
0.2630 0.2630 977 991 924 
0.2620 0.2620 977 990 924 
0.8850 0.8850 626 613 611 
0.0994 0.0994 343 329 338 
0.0450 0.0450 872 883 844 
0.2557 0.1742 1149 1123 1035 
0.1822 0.4123 1162 1135 1045 
0.1750 0.4353 1144 1094 1018 
0.1073 0.6536 1173 1125 1042 
0.1195 0.6143 1113 1066 995 
0.0991 0.6802 505 503 496 
0.0296 0.9045 676 677 655 
0.4614 0.0757 902 903 834 
0.3129 0.3770 1047 1053 958 
0.3009 0.4009 1065 1072 975 
0.2122 0.5774 1139 1135 1038 
0.0601 0.8804 642 653 645 
0.6709 0.1501 556 542 489 
0.5237 0.3383 829 828 731 
0.3846 0.5141 1016 1014 903 
0.3444 0.5648 1044 1045 936 
0.1165 0.8528 768 804 782 
0.7172 0.2389 492 535 460 
0.6513 0.2170 607 611 539 
0.5722 0.1906 702 688 624 
0.4203 0.1401 780 781 739 
0.4017 0.1338 782 786 747 
0.3914 0.1305 781 787 751 
0.2586 0.0862 732 746 741 
0.1312 0.0437 554 540 565 
0.1011 0.4255 1075 1106 1022 
0.0964 0.4520 1087 1117 1081 
0.0581 0.6699 1002 1038 968 
0.0543 0.6916 974 1010 944 
0.0154 0.9122 430 429 417 

of  ethanol,  the theory based on the part i t ion func- 
t ion (1) is capable of  describing calorimetric be- 
haviour of  all three binary systems. To explain 
this, let us notice that  the hard-core parameters for 
ethanol,  as originating from experimental  data, 
comprise necessarily the association behaviour. 

The respective calculation results for ternary 
mixtures are given in Table IV. We have here, apart  
of  experimental  values, a series of  calculations 
based on fitting the ternary data and also, as 
enunciated above, ternary results based only on 
single and binary data. Understandably,  fi t ted 
values are somewhat closer to experimental  data 
than the predicted ones (cf. the respective values 
o f  6 in Table II). 

Calculations similar to those described above 
have been also made for binary mixtures ethanol + 
n-heptane and n-heptane + benzene, as well as for 
ternary mixtures ethanol + benzene + n-heptane. 
The respective experimental  data of  heats of  mix- 
ing at 298.15 obtained by Lu and De Q. Jones 

[32] have been used. The results obtained are 
similar to those in the system containing n-hexane, 
particularly from the point  of  view of  the agree- 
ment  between calculations and experiment.  Given 
natural l imitations as to the quant i ty  of  numerical 
values we could present, we have decided to give 
full data for one system rather than sketchy data 
for both.  Thus, the data in Tables III  and IV 
enable inspection of  behaviour o f  calculated 
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functions in particular concentration regions 
(dilute solutions, solutions close to equimolar, and 
so on), for binary systems as well as for ternary 
mixtures. 

On the basis of the calculations performed, we 
conclude - again association of alcohol notwith- 
standing - that single and binary data are suf- 
ficient for reasonable prediction of ternary heats 
of mixing. It is reasonable to infer that such pre- 
diction will be numerically better for organic 
systems which do not contain highly polar or 
associated components. 

4. Nitrogen + argon + oxygen 
For the system named above we have used experi- 
mental values of  activity coefficients fi of com- 
ponents at 100 K as recommended by Elshayal and 
Lu [17] ;these authors have critically analysed and  
tested available literature data for all three binary 
systems as well as for ternary mixtures. A s / ~ i -  
~ii=NAkTlnxifl, with Equation 18 of the 
general form of Equation 20, our computations 
were made in the same way as for the preceding 
system. Table V contains interaction parameters 
and surface ratios for the binary systems. Indices 
N, A and O, refer to the respective components 
with obvious meaning. Characteristic parameters 
for components are listed above in Table I; they 
have been obtained by inter- and extrapolation of 
the values of Abe and Flory [18] and of H6cker 
and Flory [19]. 

Table V has the same structure as Table II. 
Again parameters from binary and ternary calcu- 
lations may be compared, and overlap regions of 
95% confidence limits found. More important, 

values of residual root mean squares 6 for the 
ternary system show clearly, that prediction from 
pure components and from binary data is nearly 
as good as direct fitting. 

Results of calculations for binary systems along 
with the respective experimental data are given in 
Table VI. 

Values of activity coefficients in ternary mix- 
tures, experimental as well as calculated by two 
methods are given in Table VII. We can only 
reiterate the conclusion reached for the preceding 
system about applicability of the theory. In fact, 
the agreement is excellent. 

5. Zinc + tin + cadmium 
The idea of extending the Flory-Patterson theory 
to metallic systems has been tested by one of us 
[20] for binary alloys. Except for one system 
exhibiting both positive and negative deviations 
from the Raoults law, the agreement between 
theory and experiment was found satisfactory. 
The main difficulty consisted in finding sufficiently 
accurate experimental data, for pure components 
as well as for mixtures. For the present problem, 
we have found liquid metal activities from EMF 
measurements in some ternary and even quatern- 
ary mixtures given by Ptak and Moser [21]. These 
authors have analysed the literature data as well as 
their own and have produced equations for log- 
arithms of activity coefficients of  components as 
functions of temperature and composition. We 
have chosen T =  714K, as this was the lowest 
temperature of actual experiments of Ptak and 
Moser. 

TABLE V Characteristic parameters for nitrogen + argon + oxygen mixtures at 100.0 K 

Parameter Source 

N2+Ar Ar+O 2 O2+N~ N 2 + A r + O  2 

XNA 4.005 4.595 
(3.991 ~ 4.018) (4.468 ~ 4.722) 

xAO 8.905 9.542 
(8.902 ~ 8.909) (9.217 ~ 9.866) 

XON 10.73 8.856 
(10.69 ~ 10.76) (8.692 ~ 9.020) 

SA 1.671 1.495 
SN (1.661 -~ 1.682) (1.456 ~ 1.534) 

1.538 1.353 
(1.528 ~ 1.548) (1.307 ~ 1.398) 

so 1.001 
SA (1.000 ~ 1.001) 

0.0038 (ternary) 
6 0.0005 0.0001 0.0000 0.0088 (from binary) 
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TABLE VI Activity coefficients of components in binary systems N2 + At, Ar + 02, O~ + N 2 at 100.0 K 

System xi ~ 

experimental calculated experimental calculated 

N 2 + A r  X A = 0.0195 f N =  1.000 1.000 f A =  1.163 1.164 
0.0480 1.001 1.000 1.152 1.152 
0.0813 1.001 1.001 1.139 1.139 
0.1400 1.004 1.004 1.118 1.117 
0.1565 1.004 1.004 1.113 1.112 
0.2222 1.009 1.009 1.093 1.092 
0.3092 1.016 1.016 1.071 1.070 
0.3618 1.022 1.022 1.059 1.058 
0.4142 1.028 1.028 1.049 1.048 
0.4421 1.032 1.032 1.044 1.043 
0.5169 1.043 1.043 1.032 1.031 
0.5703 1.051 1.051 1.025 1.024 
0.6483 1.065 1.065 1.016 1.016 
0.6597 1.067 1.067 1.015 1.015 
0.7485 1.085 1.085 1.008 1.008 
0.7691 1.089 1.089 1.007 1.007 
0.7888 1.094 1.094 1.006 1.005 
0.7982 1.096 1.096 1.005 1.005 
0.8230 1.101 1.101 1.004 1.004 
0.8514 1.108 1.107 1.003 1.003 
0.8685 1.112 1.112 1.002 1.002 
0.8903 1.117 1.118 1.002 1.001 
0.9001 1.120 1.120 1.001 1.001 
0.9444 1.131 1.131 1.001 1.000 
0.9470 1.131 1.132 1.001 1.000 

Ar + 02 x A = 0,0323 fA = 1.173 1,173 fo  = 1.000 1.000 
0.0855 1.153 1.153 1.001 1.001 
0.1698 1.123 1,123 1.005 1.005 
0.2519 1.099 1.098 1.001 1.011 
0.3505 1.073 1.073 1.021 1.021 
0.3942 1.063 1.063 1.027 1.027 
0.4506 1,051 1.051 1.035 1,035 
0.5684 1.031 1.031 1.056 1.056 
0.6985 1.015 1.015 1.086 1.086 
0.7736 1.008 1.009 1.106 1.105 
0.8020 1.006 1.006 1.114 1.114 
0.9048 1.002 1.001 1.146 1.146 
0.9429 1.001 1.001 1.159 1.159 
0.9604 1.000 1.000 1.165 1.166 

02 + N~ x O = 0.0500 f N =  1.001 1.001 fo  = 1.211 1.208 
0.0701 1.001 1.001 1.200 1.196 
0.0995 1.002 1.003 1.184 1.179 
0.1360 1.005 1.005 1.166 1.159 
0.1791 1.008 1.008 1.146 1.138 
0.4248 1.040 1.039 1.064 1.056 
0.4875 1.052 1.050 1.050 1.042 
0.5897 1.075 1.071 1.031 1.025 
0.6376 1.087 1.081 1.024 1.019 
0.8056 1.135 1,121 1.007 1.005 
0.9086 1.168 1.148 1.002 1.001 

Characteristic parameters of  pure components 

have been obtained in the following way. Faber 

[22] gives selected values of  molar volumes, iso- 

baric expansivities and isothermal compressibilities 

of  liquid metals close to their respective melting 

points. For Zn and Cd we have accepted Faber's 

values of  volume and expansivity, assuming that 

molar volume varies linearly with the temperature. 

One thus obtains for cadmium Vcd ( 7 1 4 K ) =  

14.25cm3mo1-1. Crawley [23] has measured 
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TABLE VII Activity coefficients of components in ternary mixtures nitrogen + argon + oxygen at 100,0 K 

xr~ xA fN fa fo 

exp calc pred exp calc pred exp calc pred 

0.8534 0.1073 1.002 1.003 1.003 1.120 1.128 1.120 1.158 1.164 1.189 
0.7405 0.1666 1.008 1.009 1.010 1.099 1.101 1.092 1.134 1.136 1.153 
0.6477 0.2627 1.014 1.018 1.019 1.078 1.076 1.068 1.126 1.127 1.140 
0.6820 0.2315 1.012 1.014 1.015 1.085 1.085 1.076 1.130 1.131 1.146 
0.3270 0.5019 1.058 1.062 1.063 1.032 1.028 1.024 1.097 1.098 1.100 
0.2001 0.6869 1.093 1.093 1.089 1.013 1.011 1.009 1.118 1.118 1.118 
0.1198 0.6757 1.108 1.105 1.103 1.014 1.012 1.010 1.100 1.100 1.097 
0.0663 0.7654 1.130 1.122 1.117 1.007 1.006 1.115 1.115 1.115 1.110 
0,4894 0.3020 1.030 1.035 1.038 1.062 1.059 1.051 1.093 1.091 1,097 
0.3341 0,4601 1.055 1.059 1.061 1.037 1.033 1.028 1.090 1.089 1,092 
0.5687 0.1417 1.023 1.027 1,031 1.098 1.091 1.079 1.084 1.080 1,086 
0.5076 0.1598 1.031 1.034 1.040 1,084 1.086 1.074 1.072 1.068 1.073 
0,4460 0.1681 1.040 1.044 1.050 1,082 1.084 1.072 1,061 1.056 1,059 
0.3527 0.3368 1.051 1.055 1.059 1,053 1.051 1,043 1.069 1.067 1.070 
0.2186 0.4806 1.077 1.079 1,082 1.034 1.031 1.027 1.071 1,072 1,072 
0.0836 0.5414 1.112 1.107 1,110 1.030 1.028 1.025 1.063 1.064 1,061 
0.0882 0,4617 1.111 1.106 1.111 1,042 1,040 1.037 1.048 1.049 1.047 
0.1762 0.3672 1.089 1.088 1,095 1.053 1.051 1.046 1.044 1.044 1.043 
0.3292 0.1234 1.068 1.070 1.079 1.094 1.100 1.088 1.034 1.030 1.031 
0.1812 0.1224 1,111 1.107 1.118 1,109 1.115 1.105 1.015 1.013 1.013 
0.1286 0.0955 1.114 1.126 1.138 1.125 1.132 1.122 1,008 1.007 1.007 

pyconmetricaUy densities of liquid Cd. Using his type for metals was advocated by Grosse [27, 28]. 

density formula in [23],  as well as using his The result obtained for 714K was virtually the 

alternative formula from a review on liquid metals same as given by Kleppa for 594 K. As for para- 
[24] ,  one obtains 14.32 cm3mol-1; the agreement meters for Sn, we have used the same data as in an 

is thus within 0.5%. Compressibility of Zn given earlier paper [20] ; density fromula of Schwaneke 
by Kleppa [25] for 693 K was accepted for 714 K. and Falke [29],  a compressibility value of Kleppa 

Compressibility of Cd given also by Kteppa [25] 
but  for 594 K was accepted also. We have made an 

independent  calculation of compressibility of cad- 
mium using the formula of Egelstaff and Widom 

[26] binding compressibility with surface tension 
and with temperature; the use of formulas of this 

[25] ,  the Egelstaff and Widom formula [26],  and 
an equation for surface tension dependence on 

temperature also from Schwaneke and Falke [29]. 

The density equation we have used agrees again 

reasonably well with the one given by Crawley 

[24] ,  and based on Psn(T)  measurements of 

TABLE VIII Characteristic parameters for Zn + Sn + Cd alloys at 714,0 K 

Parameter Source 

Z,n + Sn Sn + Cd Cd + Zn Zn + Sn + Cd 

Xznsn 244.5 261.8 
(240 -+ 249) (260 ~ 264) 

Xsncd 91.1 95.9 
(85 ~ 98) (94 ~ 98) 

XCdZn 409.8 408.5 
(399 -+ 420) (406 ~ 412) 

SSn 1.259 1.144 
SZn (1.205 ~ 1.312) (1,121 ~ 1.168) 
SOd 0.897 0.881 
s z  n (0.858 ~ 0.936) (0.871 ~ 0.892) 

SOd 0.768 
ss n (0.748 ~ 0.789) 

0.0030 (ternary) 
6 0.0049 0.0011 0.0027 0.0085 (from binary) 
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TABLE IX Activity coefficients of components in binary alloys Zn + Sn, Sn + Cd and Cd + Zn at 714.0 K 

System x i log f i  log J) 

exp cNc exp cMc 

Zn + Sn XZn = 0.100 0.179 0.173 0.001 0.001 
0.200 0.157 0.152 0.005 0.005 
0.300 0.135 0.131 0.012 0.012 
0.400 0.114 0.111 0.024 0.022 
0.500 0.094 0.091 0.041 0.039 
0.600 0.073 0.070 0.066 0.065 
0.700 0.053 0.048 0.103 0.106 
0.800 0.034 0.027 0.162 0.171 
0.900 0.016 0.009 0.269 0.276 

Sn + Cd XSn = 0.100 0.146 0.145 0.004 0.003 
0.200 0.104 0.105 0.011 0.009 
0.300 0.074 0.074 0.021 0.019 
0.400 0.051 0.052 0.033 0.032 
0.500 0.034 0.035 0.047 0.046 
0.600 0.021 0.021 0.063 0.062 
0.700 0.011 0.012 0.081 0.080 
0.800 0.005 0.005 0.100 0.100 
0.900 0.001 0.001 0.121 0.122 

Cd + Zn xCd = 0.100 0.455 0.451 0.010 0.007 
0.200 0.331 0.336 0.031 0.028 
0.300 0.239 0.242 0.062 0.059 
0.400 0.168 0.168 0.100 0.098 
0.500 0.112 0.111 0.145 0.145 
0.600 0.069 0.067 0.197 0.198 
0.700 0.038 0.036 0.254 0.256 
0.800 0.017 0.015 0.318 0.318 
0.900 0.004 0.004 0.387 0.384 

Thresh e t  al. [30] .  Characteristic parameters 

obtained from such a set of  data are given in Table 

I. 
Calculations for binary mixtures have been 

made in the same way as for previous systems. 
Interaction parameters and surface ratios are given 
in Table VIII.  Calculated and experimental  logfl  
values are given in Table IX. We have not  con- 
verted log f/  because, as mentioned above, Ptak 
and Moser gave their equations in terms of  log- 
arithms. The computat ions were then made for 
ternary mixtures.  The results are given in Table X. 
Structure of  the table is the same as of  Table VII. 
Inspection of  Table X shows that for ternary 
alloys the theory is well applicable. Apart  of  the 
system Zn + Sn + Cd, we have made similar calcu- 
lations for the system Zn + Sn + Bi, using activity 
data from the same source [21] .  The results were 
of  the same kind and led to the same conclusions 
as for alloys containing cadmium; thus, for the 
same reasons as discussed at the end of  Section 3, 
we omit  here the numerical data. 

6. Some concluding remarks 
We have found that  the F lo ry -Pa t t e r son  theory 
extended to ternary mixtures gives satisfactory 
results, and this for systems considered to be very 
different and unrelated to one another. In a way, 
this result could have been anticipated. There is 
no reason why a theory working for binary 
systems should cease to be applicable when one 
adds a third component .  As for applicabili ty to 
systems of  different kinds, we believe in the basic 
uni ty of  the liquid state. We mean by this that, 
independently of  a particular kind of  system 
studied, macroscopic propert ies are always 
determined by molecular considerations. From 
this point  of  view the evidence found is not  sur- 
prising either. 

Applicabil i ty of  the theory may have some 
further consequences. It may be now extended 
without  difficulty to quaternary,  quinary and 
other mul t icomponent  systems; one would expect  
that when taking these steps one would find 
similar validity of  the approach. Coming back to 
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TAB LE X Activity coefficients of components in ternary mixtures Zn + Sn + Cd at 714.0 K 

xz  n XSn log f Zn  log fSn log fCd 

exp calc pred exp calc pred exp calc pred 

0.100 0.133 0.330 0.330 0.322 0.094 0.097 0.085 0.016 0.015 0.015 
0.100 0.222 0.301 0.299 0.289 0.067 0.070 0.060 0.026 0.026 0.026 
0.100 0.311 0.277 0.273 0.262 0.047 0.049 0.042 0.038 0.039 0.038 
0.100 0.400 0.257 0.250 0.239 0.032 0.034 0.028 0.052 0.053 0.051 
0.100 0.489 0.238 0.232 0.220 0.020 0.022 0.018 0.068 0.068 0.065 
0.100 0.578 0.222 0.217 0.204 0.011 0.013 0.011 0.084 0.085 0.079 
0.100 0.667 0.208 0.205 0.192 0.006 0.007 0.006 0.103 0.103 0.095 
0.100 0.756 0.195 0.196 0.182 0.002 0.004 0.003 0.122 0.122 0.112 
0.200 0.131 0.272 0.273 0.268 0.067 0.067 0.054 0.033 0.033 0.032 
0.200 0.219 0.248 0.247 0.241 0.047 0.047 0.036 0.046 0.046 0.046 
0.200 0.306 0.228 0.226 0.219 0.032 0.032 0.024 0.061 0.061 0.060 
0.200 0.394 0.210 0.208 0.200 0.020 0.022 0.016 0.078 0.078 0.074 
0.200 0.481 0.195 0.193 0.185 0.012 0.014 0.010 0.095 0.095 0.090 
0.200 0.569 0.182 0.181 0.172 0.007 0.017 0.007 0.115 0.112 0.105 
0.200 0.656 0.171 0.172 0.162 0.005 0.007 0.005 0.135 0.131 0.122 
0.300 0.129 0.218 0.219 0.216 0.051 0.048 0.033 0.059 0.058 0.057 
0.300 0.214 0.198 0.199 0.196 0.036 0.034 0.023 0.074 0.074 0.072 
0.300 0.300 0.182 0.182 0.178 0.025 0.025 0.016 0.091 0.091 0.088 
0.300 0.386 0.169 0.168 0.164 0.017 0.019 0.012 0.110 0.109 0.104 
0.300 0.471 0.157 0.157 0.152 0.013 0.015 0.010 0.130 0.127 0.120 
0.300 0.557 0.148 0.148 0.142 0.011 0.013 0.010 0.151 0.145 0.136 
0.400 0.125 0.168 0.170 0.169 0.046 0.042 0.026 0.093 0.093 0.091 
0.400 0.208 0.154 0.154 0.153 0.035 0.033 0.021 0.111 0.110 0.107 
0.400 0.292 0.142 0.142 0.141 0.028 0.028 0.018 0.130 0.128 0.124 
0.400 0.375 0.132 0.132 0.130 0.024 0.025 0.018 0.150 0.147 0.140 
0.400 0.458 0.124 0.124 0.122 0.022 0.025 0.019 0.171 0.165 0.156 
0.500 0.120 0.124 0.125 0.125 0.053 0.050 0.034 0.137 0.138 0.135 
0.500 0.200 0.114 0.114 0.115 0.046 0.045 0.032 0.156 0.156 0.151 
0.500 0.280 0.106 0.106 0.106 0.041 0.043 0.032 0.175 0.174 0.167 
0.500 0.360 0.100 0.099 0.099 0.039 0.043 0.034 0.196 0.192 0.183 
0.600 0.112 0.087 0.085 0.086 0.076 0.075 0.059 0.192 0.195 0.190 
0.600 0.188 0.081 0.079 0.080 0.070 0.072 0.059 0.210 0.212 0.205 
0.600 0.262 0.077 0.074 0.076 0.067 0.072 0.060 0.228 0.229 0.219 
0.700 0.100 0.056 0.051 0.053 0.117 0.120 0.106 0.258 0.265 0.259 
0.700 0.167 0.054 0.049 0.051 0.111 0.117 0.105 0.272 0.279 0.270 
0.800 0.075 0.031 0.025 0.027 0.185 0.189 0.179 0.337 0.350 0.343 

ternary systems, for instance Hsu and Prausnitz 

[31] have studied polymer compatibili ty in such 

systems using the earlier theory [5].  It has been 

found by one of  us [11] when studying swelling 

of  natural rubber in organic solvents that  the 

F lory-Pa t te rson  theory gives distinctly better 

results than the earlier theory of  polymer solutions 

as described in [5].  Thus, using the new theory 

instead of  the old one should give more inform- 

ation on the subject o f  solubility of  polymers. The 
same statement is expected to apply even more 

to F lory-Pa t te rson  theory versus empirical 

approaches, not  only to compactibility of  poly- 

mers but also to other problems involving ternary 

liquid solutions. 
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